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A recent paper concerning the application of constraints in crystallographic refinements is criticized. It is 
suggested that the method of applying constraints put forward by Chesick & Davidon [Acta Cryst. (1975), 
A31, 586-591] is of very limited validity and has all the economic disadvantages of an unconstrained refine- 
ment. 
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It is good to see a growing interest in the use of constraint 
procedures in structure refinement. Any paper which makes 
the method more readily understood or more readily pro- 
grammed should be welcomed. 

A method of applying constraints alternative to the strict 
constraints described by Pawley (1972) has been recently 
advocated by Chesick & Davidon (1975) (C & D). They 
suggest that each cycle of least-squares refinement should 
be unconstrained and the constraint should be applied to 
the parameter shifts. This procedure loses the economic 
advantage of a much reduced cycle time and the ability 
to make use of computers with restricted storage capacity, 
contrary to the authors'  claims. A further claim is that the 
method is easier to program as the researcher does not 
have to write down and program the extra differentials 
required. Indeed this is a considerable part of the effort in 
applying constraints, but this has to be compared with the 
effort of implementing the extra task of their equation (4) 
which determines the constraints on the parameter shifts. 
It should be noticed that equation (4) involves position 
parameters and therefore positional constraints only, so 
that when further constraints are to be used, such as on 
temperature factors or site occupancies, the equation be- 
comes invalid. Each parameter needs a metric for such an 
equation; only when all parameters have the same metric 
can equation (4) be used. It would be easy to argue that 
implementation of equation (4) is no simpler than pro- 
gramming differentials whereupon the C & D procedure 
loses any of the advantages advocated for it. 

Next we must investigate whether the result of the C & 
D procedure has any of the true advantages of the con- 
straint method. Strict constraint demands a certain rela- 
tion between the usual structure parameters {Pl} which 
thereby reduces the dimension of parameter space. Let us 
call the set of parameters in the constrained configuration 
{pj). The two parameter sets are related by a transforma- 
tion, 

P, =ft({P# }), (I) 

for which there is no inverse bccause the parameter space 
dimension is being altcred. These equations contain all 
the information which is to be included in the refinement 
plus any hypothesis to be tested. If constraints are being 
used to test hypotheses then both the constrained and the 
unconstrained result are required for thc appropriate sta- 
tistical test. 

A least-squares matrix and vector are set up with com- 
ponents 

6qFh OFh 8Fh (2) 
m,j= ~ wn 8p, 8p, vl= ~ whAFh 8pj 

where Wh is the weight for the reflexion with indices h, 
AFh=--h~'°b~--F[,Ic, F~alc is written Fh and the differentials 

are found using 

~Fh ~Fh OPt 
= Z 0 g i ,  J, I,j=  pj. (3) 

The unconstrained refinement uses 

8Fh 8Fh 8Fh 
MIJ~- ~h Wh c~el c~Pj ' mj= h ~ WhZ~fh -¢~--~j , (4) 

from which we see 

m,#= ~,fk,ftjMk, , vj= ~.4#V, . (5) 
k! k 

The shift to be applied each cycle is A p = m - l v  whereas 
the C & D procedure uses a constrained version of A P =  
M - W .  The first question to be answered is: do the two 
procedures give the same shift Ap? The negative answer is 
due ultimately to the fact that (1) has no inverse. This is 
equivalent to saying that the constrained version of AP, 
let us say constr (AP), is not well defined. If the two meth- 
ods were identical, then 

Ap = ( f M f ) -  lfV = constr (M-  'V),  (6) 

where the components of f are given in (3). The matrix f 
has no inverse, so we cannot write 

( ~ l f ) -  lfV = f -  tM - i f -  ~fV = f -  ~M- 1V (7) 

which would give us the required function 

constr (M-1V).  

The procedures must consequently be different, so the vali- 
dity of the C & D procedure rests on this difference. As 
the two procedures cannot lead to exactly the same shifts 
in {p~} then they will converge to different minima. This 
is evident if we consider a cycle starting at the final mini- 
mum for one of the procedures. The suggested shift for 
this procedure must be everywhere zero as the starting 
point is a minimum. Now if the same starting point is 
used for the other procedure, the shifts, being different 
from those of the first procedure, must be non-zero. The 
question therefore arises: by how much do the shifts differ 
between the two procedures? 

A related question which is more easily answered is: 
does the C & D procedure produce a result significantly 
different from that obtained by doing the constraining 
averages on the result of an unconstrained refinement? If 
the answer is 'no' ,  then the C & D procedure has no ad- 
vantage over unconstrained refinement. The argument pre- 
sented in what follows suggests the answer, 'probably not ' .  
Let us take as a starting point for the C & D procedure the 
minimum found by applying strict constraints. In one cycle 
the computer will calculate a shift towards the uncon- 
strained result, and if the success factor S =  100% then 
the final result of the C & D procedure will be simply 
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equivalent to unconstrained refinement followed by judi- 
cious averaging - and we reject this as being of no advan- 
tage. Thus the efficacy of the C & D procedure rests on 
the difficulty of going from the constrained to the uncon- 
strained result in one cycle; the more difficult this is the 
nearer the C & D procedure is to strict constraints. A 
rough guess for a value of S would be in excess of 70%: 
the one cycle mentioned finds more than 70% of the total 
shift. With a value as high as this the usefulness of the 
C & D procedure is in grave doubt. 

In all the cases in my experience this figure has been in 
excess of 70%. An example, the first to hand in my files, 
is given by pyrazole. The residual Rw= "~wh(AFh) 2 varied 

h 
as in Table 1 where Rw improved by S = 9 0 %  in the first 
cycle after removing the constraints. 

If their procedure is to be established as worthwhile, 
Chesick & Davidon should perform detailed calculations 
to compare the results of their method with the strictly 
constrained and the unconstrained results. 

Table 1. Rw for pyrazole 

R w  

Constraint (a)* best value 254 
Constraint (b)* after 1 cycle 243 

after 2 cycles 241 
Unconstrained after 1 cycle 229 

after 2 cycles 228 
* See Pawley (1972). 
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A simple procedure is derived which determines a best rotation of a given vector set into a second vector 
set by minimizing the weighted sum of squared deviations. The method is generalized for any given metric 
constraint on the transformation. 

In various crystallographic situations the problem arises of 
finding a best rotation to fit a given atomic arrangement to 
approximately measured coordinates. Examples have been 
given by McLachlan (1972) and Diamond (1976). Diamond 
determines the best unconstrained transformation between 
the two sets of coordinates and factorizes it into a sym- 
metric and an orthogonal matrix. McLachlan finds a best 
rotation between the two sets of coordinates by an iterative 
process. The analysis below shows that a direct solution 
is also possible, despite the non-linear character of the 
problem. 

Let x, and y, (n= 1 , 2 , . . . , N )  be two given vector sets 
and w~ the weight corresponding to each pair x, ,y, .  The 
problem is then to find an orthogonal matrix U=(uu)  
which minimizes the function 

E= ½ ~ w,(Ux, - y,)2 (1) 
n 

subject to the constraints 

Uk~Ukj-- 6U = 0 (2) 
k 

where the 5u are the elements of the unit matrix. A trans- 
lation, if admitted, can always be removed from the prob- 
lem by shifting the centroids of the vector sets to the 
origin. 

Introducing a symmetric matrix k = (lu) of Lagrange mul- 
tipliers an auxiliary function (see, for example, Brand, 
1958) 

F= ½ .~. lu( ~, Uk,Ukj--fU) (3) 
z , j  k 

is constructed and added to E to form the Lagrangian 
function 

a = E +  F .  (4) 

Since for each different condition (2) an independent num- 
ber lu is available, the constrained minimum of E is now 
included among the free minima of G. A free minimum of 
G can only occur where 

c~a _ ~ .  u,k( ~. W,X,,kX,,j+ lkj)-- ~. w,y,ax,,j=O (5) 
~l lU  k n n 

and 

j 2 a  . . . .  ~m,( ~ W,,X.kX,,j+ &j) (6) 
t~llmk~UlJ n 

are the elements of a positive definite matrix. X,k and Ynk 
are the kth components of the vectors x, and y,. 

Let 
r u = ~. w,y, tx,j (7) 

n 

and 
su = Y w .x . , x . j  (8) 

n 

be the elements of a matrix R = (ru) and a symmetric ma- 
trix S = (su), respectively. For i=  m =  1 from equation (6), 
a minimum of the Lagrangian function G requires that 
S + k is positive definite, and - by rewriting equation (5) - 
that 

U. (S+ L)= R. (9) 


